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Chief, Explosion iiydrodynamics Division

ABSTRACT: A compilation and analysis of data collected 1in
the study of the base surge and related surface phenomena
resulting from shallow underwater explosions 1s presented.
This 1includes a considerable body of data not reported
elsewhere. Resuits of the firing of high explosive charges
weighing up to 4200 1bs (TNT) at positions scaled to Test
Baker in Operation CROSSROADS and at other depths are
reported. The work includes studies of the effects of
explosions at the water surface and explosions of partially
buried charges,

Scaling laws are derived and the general problem of modeling
nuclear surface phenomena with small scale experiments 1s
discussed, A method is presented for predicting base surge
growth from shallow underwater atomic explosions of various

energy ylelds, Surface bursts are discussed qualitatively.

The results indicate that many of the surface phenomena

obse: ved at Blkinl Baker are duplicated with high explosive

charges and that considerable knowledge of the dynamics of

column and base surge behavior can be obtained from small-

scale tests, However, a major difference 1s the formation

by high explosives of a central liquid jet,which rises above
the column and as it collapses, greatly augments the radial

growth of the bas2 surge, The need for more 1information
from shallow underwater atomic tests is emphasized,
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This interim report presents the data and the conclusions
concerning the surface phenomena from shallow underwater
explosions which were obtalned in the course of a general
investigation of the scaling of the base surge effects of
atomic weapons. The work was conducted at the Laboratory
for the Armed Forces Special Weapons ProJect under Task
NOL=-152,

The new experimental work which 1s reported here was carried
out by R. L., Willey, B, E. Cox, R, L, Marbury, C. E. Kopkins
and D. L, Marks, principally at the Naval Proving Ground,
Dahlgren, Virginia. The cooperation and assistance of
Dahlgren personnel and the diving group from the Explosives
Ordnance Disporsal Unit, Indian Head, Maryland are gratefully
acknowledged, Sincere thanks are due Dr, E, Swift, Jr,

for his invaluable ald and suggestions during the program

of investigation and the preparation of this report.

This report is intended for information only, and the opinions
expressed are those of the authors.

EDWARD I,, WOODYARD
Captain, USN
Commander
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THE SCALING OF BASE SURGE PHENOMENA OF SHALLUW S
UNDERWATER EXPLOSIONS

CHAPTER I *
INTRODUCTION .

1,1 Scope of Report. The base surge has been investigated
under Naval Ordnance Laboratory Task NOL-152 since the fail
of 1949 [1,2,3]%., The work was undertaken as a result of
the observation of a base surge following the underwater
atomic test (Baker) in Operation CROSSROADS and the subsequent
concern over the possibility that the surge was a dangerous
carrier of radioactivity. At NOL, the emphasis has been 3
placed on studies of the base surge and other surface
phenomena produced by underwater explosions at relatively .
shallow depths, but the program has also included investi- (%
gatlons of the analogous surface effects of underground
explosions [4,5). In addition, i1t was possible to obtain .
data on other explosion effects, such as air blast [6] and .
cratering [7]. A 1liquid model of the base surge has been é .
used with considerable success [1,2,3] and charges weighing .
0.1 gram have been fired in a vacuum tank at various pressures
in order to obtain a better understanding of column and jet
formation [2], With these experiments as a guide, a
mathematical treatment of column formation was published [8],

At the present time a large amount of data has been
accumulated on the base surge and related surface phenomena
produced by underwater explosions, Preliminary results
have been presented in References [1}, [2] and [3] but the
treatments were based malnly on the resuits of 21-lb and
100-1b explosion tests and were somewhat limited in scope.

* Such numbers refer to the 1list of references at the end
of this .report,

1
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This report presents a summation of the currently A
avallable data on relatively shallow underwater explosion |
tests with charges weighing up to 4200 1lbs and the formulas !
and conclusions presented herein will supersede those glven i
previously, The report also includes a discussion of the |
general scaling problem and a summary cf methods for the |
prediction of the base surge phenomena asscclated with :
atomlc weapons, in accordanc~ with the current state of !
knowledge, ;
1.2 Sources of Data, The primary sources of data on base f
surge are the programs of high explosive tests conducted by }
NOL, During the first two years of investigation, the !
emphasis was placed "n charges weighing 21 1lbs and 100 1lbs, I
which were fired at the Stump Neck Annex of the Naval Powder
Factory, Indian Head, Maryland. The principal daia collected
were radius measurements of the surée cloud as a function of
time for explosions scaled geometrically to Test Baker in
Operation CROSSROADS, A weapon with a 20 kiloton yileld,
fired at mid-depth in 180 ft of water was used as the
prototype condition, However, recognition of the complex
nature of base surge formation led to the measurement of all
the visible surface phenomena, In addition, the range of
firing conditions was extended in order to determine the
effects of charge and water depth hpon the surface effects,

Attempts to obtaln instrumental data from within the
surge clouds formed by the 21-1b and 100-1b charges were
! not highly successful, due to the small size and relatively
—_ brief durations of the surges, In addition, the duration
of the surge was too limited for an adequate comparison
oy with the scaled record of the growth of the Test Baker base

o surge. oo

It was therefore decided to shift the emphasis to

larger charges, and experimental tests with 600-1b and 4200-1b

2
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charges were conducted at the Naval Proving Ground, Dahlgren,
Virginia,

Photographs of underwater explosion tests fired in the
Potomac River from the EPCS-1413 in connection with other NOL
projects were also obtained., Charge and water depth were
different from thoge obtained at Stump Neck or Dahlgren,

The number of charges of each weight fired in the !
several NOL programs are listed in Table 1.1, For scaling
purposes, charge weights given in the table were converted ;
to the TNT equivalents given in Appendix A, 3

Motion picture films of the larger charges fired in ,
the éxperimental programs at the Waterways Experiment Station,
Vicksburg, Mississippli [9] were forwarded to NOL for analysis,
In addition, data published by other investigators [10,11,12]
have been incorporated into this report when arpropriate,

1,3 Experimental Arrangements, For the smaller charges,
water depths to about 5 ft were obtained in Chicamuxen Creek,
which lies to the east c¢f Stump Neck, Maryland, and deeper
water, to a depth of 16 ft, was avallable in the Potomac
River weat of Stump Neck,

'The underwater firing area at Dahlgren, Virginia,
which ./as used for the larger charges, waa located between
Beabors Point and Black Marsh on the Pumpkin Neck peninsula, 1
A brcad beach with a gently sloping bottom was used for
these tests, The bottom consisted of a firm clay or sand :
from the shore out to a water depth of about 5 ft but was |
covered with soft silt at greater depths (7].

The "21-1b" charges consisted of 7 tetrytol M2
demolition blocks, taped together to form a charge 12 in,
long, 8 in, wide, and 4 in, high (see Fig, 1.1). (The
tetrytol charges weighed 17.5 1lbs but were consldered to be
equivalent to 21 1bs of TNT,) A 100-lb charge was formed by
strapping two 50-1b TNT Mark 14 Demolition Blocks together to

3
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4200-LB TNT (TOP VIEW) 600-LB TNT
— (SEVEN MK 7 DEPTH (wK 7 DEPTH CHARGE)
B CHARGES) /
— .
- - '
- po— 13" —>
Y14
Bt 21-LB TNT EQUIVALENT 100-LB TNT
" (SEVEN BLOCKS TETRY- (TWO0 50-LB K 14 DEMOLITION
: TOL) BLOCKS)

FIG. 1.} DIMENSIONS OF CHARGES FIRED IN
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form a cube, about 13 in, long on each side, For some
experiments, 20-1b packages of 100% Blasting Gelatin,
manufactured by the Atlas Powder Company, were used
individually or combined to form 100-l1lb charges.

The 600-1o charges were Mark 7 depth charges, which
are 2U4-7/8 in, in diameter and 27-5/8 in, long. The total
length of the casing includes rims about one in, high, which
sank into the hottom when the charges were placed on end for
firing., The 3600-1b and 4200-1b charges consisted of 6 and
7 Mark 7 depth charges respectively, detonated in the central
charge, which was encircled horizontally by the others, Thus,
charge heights were the same as for the 600-1b charges, but
diameters were about three times as large, The 3600-1b and
4200-1b charges, therefore, do not scale geometrically to the

smaller charges and have a proportionately deeper layer of water

above them thian the smaller charges at the same scaled depth.
A small number of other charges of various weights and

sizes were also included in the general program (see Table 1.1),

Composition C~3, a plastic ¢xplosive, was used as a
booster for the TNT charges, and the charges were detonated
with U, S. Army Engineers' Special Electric Blasting Caps.

The 21-1b and 100-1b charges were tied to a wooden pule
or sucpended from a float when it was necessary to fire these
above the bottom, Wocden platforms, resting on the bottom,
suprorted the larger charges when charge positions above
the bottom were required, The placing and arming of the
charges at Dahlgren in water depths greater than 5 ft was
done by divers from the Explosive Ordnance Disposal Unit
at Indian Head, Maryland,

At Stump Neck, one or two 35 mm Mitchell motion
picture cameras, operating at 24 fps, were used to photograph
each shot. For some of the tests, a 16 mm camera with
Kodachrome film was mounted on a pole near the charge position

6
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and aimed at the water surface to obtain close-up views of
surge behavior,

At Dahlgren, two cameru stations were used, generally
with a total of five 35 mm Mitchell cameras operated at
speeds ranging from 24 to 96 fps, twe K-25 aerial cameras,
and one 16 mm camera with Kodachrome film, Various positions
were used, and the distances from the cameras to the charge
varied from about 250 ft to 6600 ft, Timing for the Mitchells
was provided by an electronic device which placed 100 dots
per second on the margin of the film, or by a clock in the
field of view of the camera. No timing was used in the 16 mm
camera, The time interval between frames on the K-25 cameras
was about 0,42 seconds,

A distance scale was established with markers placed a
measured distance apart at the charge location, on a line
perpendicular to the camera line of sight. Photoflash buib
scale markers were used for the larger charges (see Appendix B)
and were visible from distances greater than 6000 ft,

The tide at Dahlgren 18 semidiurnal with a mean annual
range of about 1,6 ft and is greatly affected by wind con-
ditions, It was necessary to study these tidal effects and
maintain a constant check on weather conditions. Predictions
of tide and wind were made daily, and as two days were
required to prepare instrumentation for each shot, a test
was scheduled only when two consecutive days with satisfactory
conditions were expected,

1,4 Analysis of Photographic Records, Measurements were
made directly on continuous photographic prints of the 35 mm
films, enlarged 5 times, The K-25 and 16 mm films were
sometimes used to provide supplementary data; however, these
were primsarily useful for documentary purposes, K-25 prints
are used as illustrations in this report when possible because
of their superior aquality.

7
CONFIDENTIAL

—— e = e s o -



TR W AR e - _—_— Sl R T

v/
CONFIDENTIAL
NAVORD Report 2987
- The inatant of detonation as seen on the films was

g taken as zero time, Length scales were corrected to
compensate for the apparent vertical foreshortening in
measurements of jet heights resulting from 600-1b and 4200-1b
explosions. In addition, measurements were corrected for any
horlizontal motion due to the wind,

The measurements of each shot are summarized in
Apperiix A, Data obtained on temperatures, droplet and
particle size distribution in the base surge, and meteorology
at the test sites will be presented in NAVORD Report 2988 ([13].
1.5 Symbols, Definitions and Units, The symbols used
throughout this report are listed in Table 1.2.

TABLE 1.2
SYMBOLS, DEFINITIONS AND UNITS
Symbol Units Definition
t sec time
1 W 1b (TNT) charge weight
¥ d £t water depth ‘
* ¢ £t charge depth, measured from the
K water surface to the center of the
e, charge
3w. Mg rt/lbl/3 scaled depth, d/wl/3, for charges
i on the bottom
%%{ Ao rt/1b1/3 {caled depth,,c/wl/B, for charges
R not on the bottom
hE \ ft/sec venting velocity
S ft smoke crocwn diameter
e, millibars saturation water vapor preasure
] millibars water vapor pressure
T ft radlal throwout diameter
D e column diameter .
C ft column height, measured to the base
of the smoke crown .
8
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TABLE 1,2 (CONT,)
SYMBOLS, DEFINITIONS AND UNITS

Symbol Units Definition

J ft Jet height

J ft Jet diameter

Q ft overall height

R 't base surge radius

H ft base surge height

r dimensionless scaled base surge radius, R/Dmax

h dimensionless scaled base surge height, H/Dmax

T sec/ftl/2 scaled time, t/D;ﬁE

P g/cm3 density of moving fluid

Po g/bm3 density of ambient fluid

c dimensionless density ratio fjfg

r' aec/Tt1/2 scaled time, t ciéi/bmax’ including
effect of column height

h' dimensionless scaled base surge height,
H/(Cpay Dpax) /2 including effect
of column height

A ft radius of underwater explosion

bubble

1,6 Statistical Treatment of Data., It is not generally
possible to fire shots in identical conditions in field
ezperimentation. This might be accomplished with small
charges in a tank or artificial pond ([9,11]. However, the
large scale of experiment required for the formation of
surges of suitable size for measurement precludes this.
Because of variations in bottom conditions and atmospheric
effects, the nature of the phenomena, and the impossibiiity
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of attaining complete objectivity in the measurement of |
records, a considerable degree of dispersion is usually !
found in the data. A discussion of the scatter of surface
phenomena data has been presented in Reference [3] and
additional material is given in Sec. 6,1 of this report.

The statistical terms and symbols used in this report
are defined in Table 1,3.

TABLE 1.3
STATISTICAL SYMBOLS AND DEFINITIONS

U

Symbol Definition ! .
X data expressed as individual items o
N total number of items
z symbol meaning "sum of"

X arithmetic mean
X deviation from arithmetic mean
o g standard dev..tion of a single

observation

°h standard deviation of the mean
\' coefficient of variation (%)
¥ - L(gg)_
x = X-TX
2
; e -\
o g
. G
v = 100 < .
X
10
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In the usual formula for ¢, the sum of the squares of
the deviations 1s divided by the total number of items, 1In
this report,, a correction is introduced by dividing by one
less than the total number of items, as a relatively smsll
amount of data 1s avallable in each category.

In many of the illusatrations in this report, the
standard deviation of a single observation and the standard
deviation of the mean are indicated. This has been done only
when at least 4 observa‘ions are avallable for the same or
very similar firing conditions. A diagram showing the method
of presentation i3 given in Fig. 1.2,

K + O’M——>
+'_—Y

X -oy__»
——(--Y - O

FIG 1.2 METHOD OF iNDICATING SCATTER ON FIGQURES

if the data have a Gaussian distribution, about 68% of
all the observations will fall between X+o and X-o and over
95% of all the observations will lie between X+2c and X-20,
If the extremes are disregarded X120 approximately represents
the range of the data,

Throughout this report, the symbol A 1s used to represent
the arithmetic mean of a group of scaled depths.

11
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CHAPTER 11
SURFACE PHENOMENA

2.1 General Description. The appearance and structure of
the surface phenomena producea by underwater explosions are
markedly dependent upon charge depth and water depth. The
results presented herein are limited to relatively shallow
water conditions, where venting of the explosion bubble
occurs during its initial expansion, but significant
differences are observed in effects when firing conditions
are varied eveii in this narrow range.

As an introduction it will be of interest to describe
briefly the sequence of events above the water surface
produced by the explosion of a 4200-1b TNT charge at a depth
scaled to Test Baker. This represents an intermediate con-
dition in the shallow charge range, and geometrical scaling
1s accomplished by placing the charge at mid-depth in 8.49 ft
of water,

The first effect visible above the water surface is the
vertical venting of a cloud of solid and gaseous explosion
products mixed with a fine spray of water. This cloud grows
rapidly into a roughly spherical shape and has Leen termed a
"smoke crown". The smoke crown is followed by a cylindrical
column of water, which rises beneath it and grows laterally
to a maximum diameter of approximately 100 ft about 0,75
seconds after detonation (Fig. 2.1a). At the same time, the
smoke crown rises and expands, The column enters the bottom
of the smoke crown, but the extent of penetration is not
known., For a 4200-1b shot scaled to Test Baker, the maximum
height of the part of the column remaining visible beneath
the smoke crown is about 40 ft,

Between 1.5 and 2 seconds after detonation, the leading
edge of a high velocity jet appears above the expanding smoke
crown, and rises to a height of 1000 ft (Fig. 2.1 b,c). This

12
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(b) 2.0 SEC (d) I5 SEC
SHOT NO. 276 WATER DEPIH =2 8,2% FT
’ c:0.268 FT/L8"3 CHARGE DEPTH=® 4.33FT

FIG. 2.1 SURFAGCE EFFECTS OF A 4200-LB TNT
EXPLOSION SCALED TO TEST BAKER
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Jet appears to be predominantly liquid and is dark in color
due to explosion products, probably carbon.

As the maximum column diameter 1s reached, a break-
through of dark material is observed at the bass of the
column, This appears to be a mixture of water and bottom
material ejected when the crater is formed and reaches a
meximum height of 30-50 ft for shots scaled to the Baker
geometry, After 8 to 10 seconds splashes may be observed
from rocks and clumps of clay which were ejected by the
explosion to greater heights. The maximum diameter of this
throwout is about 200 ft.

The water column ejected into the air by the explosion
breaks up into small droplets, giving the column a whit.
appearance., When the column collapses the water droplets
entrain the air in the column and the mixture of water and
air descends and flows outward as if it were a2 homogeneous
fluid'. This dense cloud, or aerosol, constitutes the base
surge, which grows radially from the base of the column
(Fig. 2.1¢c,d).

In the high explosive tests the surge has a dense white
appearance at first and becomes thin and tenuous as it grows
radially and verticaliy. Phctographs taken from above the
surge show a clear space behind the leading edge, indicating
that the primary surge has the shape of a torus. (The torus-
like form of the Baker surge may be seen in Pig, 3.1,)
However, material falling from the jet and smoke crown
propagates radially to form secondary surges, which may mix
with the primary surge.

*  The phenomenon of bulk subsidence of the column will be
discussed more fully in Reference (13].
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2.2 Smoke Crown, The smoke crown formed by an underwater
explosion results from the initial venting of a cloud of

smoke and fine spray directly above the charge. The venting
velocity decreases with increasing charge depth. The relation-
ship in feet per second can be expressed by the following
formula, which is applicable to bottom shots only within

the indicated range of scaled depths:

V-2270 - 1580 A, (0.1<A < 1.1 rt/161/3) (1)

In general, shallow shots produce broad low bowl-
shaped smoke crowns, which exhibit a rapid initial lateral
expansion, Charges scaled to Test Baker ( Ao = 0.26 rt/1b1/3)
produce smcke crowns which, except for their darker color,
resemble the "cauliflower" cloud above the Baker column,

(See Fig. 2.2), Smoke crowns formed by deeper explosions
are narrow and extend to greater heights, They appesr to
consist mostly of a fine spray (Fig. 2.3).

A piot of maximum smoke crown diameter versus scaled
charge depth for charges on the boitom is shown in Pig. 2.4,
and indicates that within a scaled depth range from
0.1 ft/lb1/3 to about 0.6 rt/1b1/3 maximum smoke crown
diameter 1is virtually 1ndependeht of depth and is mainly a
function of charge weight. For Ad values greater than
about 0.6 rt/1b1/3 the maximum horizontal extent of th¢ smoke
crown decreases rapidly with increasing charge depth, At a
scaled depth of 2,15 tt/lbl/B, the smoke crown is narrow and
elongated and apparently contains little carbon,

Maximum smoke crown diameters versus the cube root of
charge weight for charges on the bottom within the scaled
depth range of A, = 0.1 ft/161/3 to A, = 0.6 rt/1b!/3
are shown in Fig. 2.5. Using cube root scaling, the relation-
ship in ft and 1b is expressed by the forrula:
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‘ tex 0.5 SEC g
. SHOT NO. 280 }
WATER DEPTH: I.B3 FT
Ag 018 Fr/LBYs ;
?
;
i
i
ta% 0.4 SEC
SHOT NO, 2i4
WATER DEPTH: 4.33 FY
Agi0.269 FT/LBYa .
FIG. 22 SMOKE CROWN FORMATION BY RELATIVELY
SHALLOW 4200-LB EXPLOSIONS .
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SHOT NO. 308

WATER DEPTH s 3.92 FT

Age0.0a8 FT/L8Y8

FIG. 2.3

SMOKE CROWN FORMATION BY RELATIVELY
DEEP 100-LB EXPLOSIONS
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0.25 SEC

1.0 SEC

86407 NO. 262
WATER DEPTH * 4.83 FT

Ag+1.06 FT/L0Y3
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1000
CHARGE WEIGHT
X 4200-L8
o 600-L8
] 100- L8
800 X s 21-L ;
x X X 0 NO. OF SHOTS |
L o
E X X xx
2 ° Lo o g °
(]
3 scol o ® ? L 19
= e °
.'-.' "1
w
: (o)
; . |’ af ||
E 1005 )
0 (3]
g ¥ .—-r—i
x &
y . h" ¢
']
sot— 4
g m ﬁ °
: ] “ ab
i . “
20
10
0.l ot os ] by [
SCALED CHARGE DEPTHA 4 (FT/LB %)

FIG. 24 MAXIMUM SMOKE CROWN DIAMETER
vsS

SCALED CHARGE DEPTH
(CHARGES ON BOTTOM)
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Spax = 22.6 WY/3 (0.1<A 0,6 ££/101/3) (2)

The narrovness of the smoke crown formed by deeper
shots indicates that the area of fallout is relatively
small for explosions in deeper water. In very shallow water
the fallout might extend farther than the base surge.

Extrapolation of formula (2) to a charge weight of 20
kilotons gives a smoke crown diameter of 7730 ft, which is
coensistent with the Test Baker cauliflower cloud diameter of
7340 £t [14]. The Baker value is the maximum recorded but
was obtained before the cloud had reached its full size,

2.3 Condensation Cloud, When a shockwave passes through
the atmosphere and 1s followed by a rarefaction wave, the
ambient air in the rarefaction phase may be cooled adia-
batically to saturation and the condensation of water vapor
may occur, The cloud formed in this manner is brief in
duration and evaporates when the atmospheric pressure returns
to normal, The effect is cimilar to that observed in a
cloud-chamber,

Condensation clouds have bheen observed on several of
the 4200-1b explosions and one shallow 600-1lb explosion, In
almost all cases, the condensation started at the base of the
smoke crown, A secondary phase often started at the surface
of the water, The condensation cloud furmed by Shot 222 is
1llustrated in Fig. 2,6. There was a slight development of
the cloud in Shots 275, 214, 215, 219, and 297, but the
formation of a hemispherical cloud was observed following
Shots 293, 217, 222, and 283 {600-1b).

The development of condensation clouds 1s dependent
upon the strength of the shockwave in air, which 1s greatest
for underwater explosions when firing takes place at shallow
depths, The formation is also sfrongly dependent upon the

20
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SHOT NO. 222
WATER DEPTH=8.50 FT
CHARGE DEPTR = 467 FT

A :0.289 FT/L8"”3

FIG. 26 FORMATION OF CONDENSATION CLOUD
BY 4200-LB EXPLOSION
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amount of atmospheric moisture avallable for condensation,

Relative humidity alone 13 not an adequate index of the
probability of condensation., Temperature effects are also
important, as warm air requires a greater amount of cooling
for saturation to occur than cool air, if both have the same
relative humidity. A more satisfactory parameter 18 the
atmospheric vapor pressure deficit (es~e), which 13 the
difference between the saturation and ambient vapor pressures
and combines the effects of temperature and relative humidity
into one 1lndex number. Low values of (es-e) are favecirable for
condensation cloud formation.

For example, the data and results of Shots 281 and 293,
both fired at 67% relative humidity, are compared in Table 2.1.
Although firing conditlons are almost identical, a complete
hemispherical cloud formed on the cooler day while no cloud
was observed on the warmer day.

TABLE 2,1
EXPERIMENTAL DATA FOR SHOTS 281 AND 293

Shot No. 281 293
Velght 4200 1bs 4200 1bs
Water Depth 2.17 ¢t 2,52 ft
Charge Position Bottom Bottom
Relative Humidity 67T% 67%
Temperature 94 ,0°F T4.,0°F
Vapor Pressure Deficit 18.0 mb 9.5 mb
Condensation B
Cloud Formation None Complete

The effects of charge depth and vapor pressure deficit
on condensation cloud formation for the 4200-1b charges
fired in the NOL programs are shown in Fig, 2.7, which
indicates the tendency for clouds to form at low values of

22
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FIG. 2.7 EFFECTS OF CHARGE DEPTH AND ATMOSPHERIC
CONDITIONS ON CONDENSATION CLOUD FORMATION
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(e8~e) and shows a greater probabllity of occurrence when
charges are shallow,

The cloud chamber effect obscures the early stages of
column development, which are important in the study of
surface phenomena, However, 1t could possibly be used to
study the growth of shockwaves at positions close to the
explosions,

At Test Baker also, the condensation cloud began 1its
formation at the Jjunction of the smoke crown and the water
column, A second part started below the first, about 500 ft
above the water, and a third cloud formed at the water
surface., All of these parts merged into one hemispherical
cloud., The vapor pressure deflicit during the Baker test was
8.0 mb.,

2.4 Radial Throwout, When charges are exploded on or near
the bottom in very shallcw water, a spectacular radial throw-
out of bottom materlial occurs., The amount and extent depend
upon the composition of the river bottom as well as upon
charge welght ¢~4 depth, Clay bottoms and bottoms covered

by gravel or rocks give the greatest throwout effect, Debris
and clumps of clay are ejected through the expanding water
column and the smoke crown at high velocities, Figure 2.8
1llustrates the throwout resulting from 4200-1b TNT charges
fired on the bottom at various depths, Whenever poasible,
the maximum extent of the resulting splashes was measured

for all charge weights. (See Appendix A.)

For a 4200-1b TNT charge fired at a depth of 1.83 ft,
throwout material is first observed emerging through the
column walls at about 0,1 second. The time of this initial
appearance increases with increasing charge depth, and the
throwout becomes smaller in magnitude. At a depth of 8.25 ft,
a mixture of bottom material and smoke emerges through the
column walls close to the water surface at about 0,5 second,
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rising to a2 height of roughly 90 ft. This materisl is not

ejected radlally to great distarnces but falls into and mixes

with the bas¢ surge, as can be seen in Fig, 2.8 (Shot 274)
Throwout diameter measurements are plotted against

scaled charge depth in Fig., 2.9 for explosions on the bottom.
The figure indicates that there is a high degree of scatter

due to the differences in bottom conditions and the impossi-
bility of measuring exact radial distances when the spiashes
were not on a line perpendicular to the camera line of sight.

The following expresslon for throwout dlameter as a

function of charge weight and depth can be obtained from the

data, using the maximum values for each weight and scaled
depth:

Toax = 59+6 wO-B5T g7l (0.1 < hg< 2.0 £t/10%/3)
The formuila 1s assumed to be applicable to conditions well
sulted for throwout, such as explosions in areas covered
with boulders or hard clay.

The effect on maximum throwout diameter of firing a
charge off the bottom is shown in Fig, 2,10, a plot of

(3)

T ve /3 ror charges on the bottom ( A ¥ 0,26 ft/lbl/3

max 173
and Ay ¥ 0,53 ft/1b ) and charges at mid-depth

{ Ac = 0,26 rt/1b1/3). The relationships for these three
cases are expressed by the following formulas, where T is
in feet and W in pounds:

0.124 1/3
Tnax = 229 W% ( Ay = 0.26 ft/1b1;3)
Thax = 112 W ° ) (A4 = 0.53 ft/lbl )
? = 88 w012 ( A, = 0.26 rt/101/3)

Formulas (4) and (5) were obtained by substituting the
indicated values of Ad in formula (3). The relationships
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indicate that, for s given water depth, damage due to throwout
is at a maximum when the charge is fired on the bottom.
The formulas are consldered valid only within the
investigated range of charge sizes, Extrapolation to
nuclear weapons yields values that are obviously too low, -
2.5 Column, The maximum column dlameter, Dmax’ is f
measured at the completion of the rapid horizontal expansion
of the cylindrical water column, while the outer adges are
s8t111 sharply defined and prior to the appearance of "spikes'.
The differences in the appearance of the column at the time
of maximum dlameter for various firing conditions are shown P
in Fig. 2.11. In general, deeper charges produce broader, .m;
higher columns than shallow charges in the range of depths g
shown. Very shallow charges fired on the bottom at scaled A@
depths A, = 0.2 ft:/lbl/3 produce columns which contain ‘
considerable bottom material, e.g., Shot 281, Fig. 2.11.
A plot of maximum column dlareter versus the cube root
3‘ of charge welght for TNT explosions scaled to Test Baker
" (A, ¥ 0.26 £t/10%/3) 1s shown in Fig. 2.12. Mean values
3 for shots of the same weight are plotted and the standard
deviation of a single observation and the standard deviation
3 of the mean are indicated. The relationshlp between maximum
55, column diameter and the cube root of charge weight 1s ex-

-

- “C{x -

R

"}’ pressed by the formula: ‘ﬁ
D =6.75u/3 (A ¥ 0.26 ££/10/3) (7) !
ax c ¥
. 3
Q%ﬁ It should be noted that the Test Baker value of 2030 ft é
R for maximum column dlameter falls very close to the cube root g
e l1ine, and lles within the range of scatter of TNT results. ¥
b When D 1s plotted versus w/3 for charges on the !
7?%7 bottom, grouped according to scaled depths, the following
Sl relationships are obtained:
22
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SHOT NO. 28I WATER DEPTH =2.17 FT SHOT NO. 221 WATER DEPTH»9.25 FT
W= 4200 LB CHARGE ON BOTTOM W 4200 LB CHARGE ON BOT7OM
Dmax *87.7 FT Ad=0.135F1/Le”3 Omax =14 FT AXq =0.574 FT/L8 /3

/

SHOT NO. 277 WATER DEPTH:=9.12 FT SHOT NO. 222 WATER DEPTH = 8,50 FT
W:=600 L8 CHARGE ON BOTTOM W= 4200 LR CHARGE DEPTH » 4,67 FT

Dmax *70.7 FT Ag =1.08 er/ue'/s Dmax *99.0 FT  A¢ x0.289 FT/LB"3

FIG. 2.11 GOLUMN FORMATION BY EXPLOSIONS
AT DIFFERENT DEPTHS
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(CHARGES SCALED TO TEST BAKER)
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Doy = 6.45 wl/3  (0.25< Ag< 0.32) %y = 0.28 rt/16%/3  (8) .
Dpax = 7+30 w/3 (0.48< A< 0.66) Ay = 0.55 ft/1b1/3 (9)
Dpax = 855 w3 (0.75< 1 ;< 2.22) Xa = 1,46 ft/lbl/3 (10)

The above formulas may be combined to express Dmax as a
function of charge welght and water depth:

Dy = 8.01 WO-2T8 40.166 (y H5 ag<2.22 £8/163/3) (11)

Equation (11) may be solved for different weights, as
shown by the lines in Fig. 2,13, a plot of all Dmax values
for bottom charges as a function of scaled depth Ad'

Shallow charge depths, at which "smog" surges are
produced, are delineated for each charge welght, the limits
varying with charge welght because of the shapes of the
charges (see Sec., 1.3). Smog surges are defined as those
that contain vislble quantities of smoke, and will be
discussed further in Chapter 4, Figure 2,13 indicates the
trend towards Jncreasing column diameters when charges are
fired on the bsttom in 1increasing depths of water, The
extension of formula (11) beyond the indicated range may
not be Justified.

Measuvrements of maximum column diameter were made in
several high explosive studies conducted in preparation for
Operation CROSSROADS and were reported by J, W. Johnson in
1946 [10]. Using charge welghts ranging from 0.35 1b to
600 1bs (INT), Johnson obtained a formula for the "maximum
base-width" of the plume for explosions scaled to the Baker
geometry of:

D, = 7.3 wt/3 (12)
where Dp is in ft and W is in lbs.
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Johnson's "maximum base-width" coincides approximately
with the maximum column diameter defined herein, His formula
is the same as that obtained for bottom shots scaled to the
Baker water depth in the NOL programs, which may indicate a
different manner of measurement of maximum c¢olumn size,

The helght, C, of the water column resulting from a
shallow underwater explosion is measured f om the water
surface to the base of the roughly spherical smoke crown or
"cauliflower" cloud, The maximum height is attained after
the column has reached its maximum diameter,

For mid-depth explosions scaled to Test Baker the
relationship between the maximum column height and the cube
root of the charge weight is shown in Fig, 2.14 and 1is
expressed by:

Cax = 850 wl/3 (A, ¥ 0.26 rt/161/3) (13)
It will be noted that the height or”the'Baker column,
measured to the base of the cauliflower cloud, lies con-
siderably below the cvbe root curve,
The dependence of maximum column height cmax upon
charge weight and depth for charges on the bottom is 1llus-
trated in detall in Fig. 2.15, a plot of all available cmax
values versus scaled depth., The relationship in ft and lbs
can be expressed by:

Cpay = 14.5 WO+13 a%-393 (0,24 < A <1.10 rt/16Y/3) (14)
The formula is based on the assumption that maximum column
height is a function of the energy yleld and the¢ scaled

charge depth and is obtained from the following formulas:
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Cpax = 7-15 ¥1/3 (0.28<1,<0.30) X, = 0.27 ££/1Y/3  (15)
Cpax = 100 W3 (0.48<A,<0.67) T, = 0.55 r£/16Y/3  (16)

ma
Crax = 170 wi/3 (o.7u<xd<1.1o) Ay = 1,0 ft/1b1/3 (17)

ma d
In Pig. 2.15 the range of shallow scaled charge depths
which result in the formation of smog surges is delineated
by vertical dashed lines for each charge weight. However,
the column heights measured in the smog range fall in line
with the data from explosions at greater depths fairly well.
The formulas indicate an increase of column height with
increasing depth of firing but should not be extended beyond
a scaled depth of about 1.1 rt/1b1/3 for bottom explosions,
The surface phenomena from deeper explosions are markedly
difcferent in appearance, and column and bsse aurée formation
at greater valuves of Ad have not been studied in detail,
The initial vertical column growth for four %200-1b TNT
charges on the bottom in water depths ranging from 2,52 ft
to 8,25 £t is shown in Fig. 2.16a, nnd the column growth for
two 4200-1b charges at mid-depth in £.25 ft and 8,77 ft of
water is shown in Fig, 2,16b, The curves indicate that
bottom explosions in deeper water produce faster growing,
higher columne than bottom explosions in shallow water within
the given range., Bottom explosions scuiud to the Baker
water depth form higher columns than explosions at mid-depth
in the same depth of water,
2.6 Jet, The Jet produced by shallow underwater explosions
appears above the rising and expanding smoke crown as a central
spout of water and explosion products., It has an initial
vertical velocity greater than that of the column, and rises
well above 1t, Maximum Jet height, Jmax’ is defined as the
greatest height attained by the rising jet before its lesiing
edge is distorted by upper winds and turbulence, Measurements
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of the overall height, Q , &re made subsequent to the
dasurement of Jmax’

The effests of charge depth and water depth on the jet
are 1llustrated 1@ Pig. 2.17. At sculed depths less than
about 0,20 ££/16%/3, the leading edge of the jJet, as it
emerges above the smoke crown, is broad and bushy, The Jjet
is almost black, indicating a high carbon contsnt, As charge
depth is increased, a fastei, more clearly defined Jet 1s
observed, The leading edge is sharply outlined and a
greaster water content is apparent from the lighter color.

As examples, the high, thin liquid Jet prcduced by a 100-1b
TNT charge fired on the bottom in 4,83 ft of water {scaled
depth Ay = 1.04 ft/1b1/3) is shown in Fig, 2.17 and the Jet
resulting from a 4200-1b INT charge fired on the bcttom in
12 £t of water ( Aq = 0,745 rt/1b1/3) is also illustrated,

Maximum jet height is plotted against the cube root of
the charge weight for shots scaled to Teat Baker in Fig. 2,18,
On th2 basis of the NOL results, the relationship 1is
expressed by the formula:

Jpax = 65.8 w1/3 (A, ¥ 0,26 tt/161/3) (18)

Data reported by J., W, Johnson [10] for explosions
scaled to Baker are shown in Fig, 2.18 for comparison with
the NOL results, Johnson's formula for maximum plume height
is:

Z, = 109 wi/3 (19)
where zp is in £t and W 18 in 1bs,
Cube root relationships for maximum jet height obtained

for hottom explosions at scaled depths equal to or greater
than 0,25 xt/1b1/3 are presented below:
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Ymax= 870 FT 10 SEG JImax= 1380 FT 0.8 S€G
SHOT NO, 280 WATER DEPTH = 1.83 FT SHOT NO, 220 WATER DEPTH =i2.0 FT
W= 4200 L8 Ad=o.114 FT/L8"3 W= 4200 LB Ad=0.745 Fr/L8"3

~F

Jmax = 1023 FT 8 SEG Jmax=370 FT 1.75 SEC

1

; SHOT NO. 276 WATER DEPTH 20.28 FT SHOT NO, 262 WATER DEPTH=4.83 F

37}7 W= 4200 LB A¢ =0.288 F1/Ln'/3 weioOLD Ad=1.04 F1/L'/3

b | _
" FIG. 2.1 JET FORMATION BY EXPLOS!ONS AT

DIFFERENT FIRING CONDITIONS .
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Tpax = 6440 w13 (0.25< Ay < 0.31) Ay = 0.28 rt/16Y/3  (20)
Jnax = 7240 wl/3 (o.88< Ag < 0.58) ay = 054 rt/1b1/3 (21)

- 1/3 T 1/3 ,
Joax = 85,0 W (0.74< Ay < 1.1) Aq = 0,97 ££/1b™ (22)
For charges on the bottom, the effects of charge weight
and depth on maximum jet height are shown in Fig, 2,19, a
plot of all available Jmax data versus scaled charge depth,
Ad. The relationship in £t and 1lbs can be represented by

the formula:

Tnax = O4.8 w0256 40.232 (4 3¢ A< 1.1 re/101/3)  (23)
Very shrllow scaled depths at which smog surges are observed
are delineated in Fig. 2,19, but the data indicate that
formula (23) 1z valid within the smog range. The scaled
depth range of the data 1s 0,1< ), < 1.1 ££/161/3 ana the
extenslon of the formula to shallower or deeper scaled charge
positions may not be Justified, In addition, it is not wise
to apply formula (23) to TNT explosiona considerably larger
than 4200 1bs because the retardation of the jet by atmospherio
friction may not scale to jet size in a simple manner, Also,
Johnson's results indicate that small charges may not fall in
line with formula (23).

Within the range of variables used it can be noted that
x is approximately equal tc 10 Dnax‘

Jet height as a function of time for 4200-1b and 600-1b
TNT charges at scaled depths ranging from 0,114 rt/1b1/3 to
1,08 ££/1b1/3, and the moximum height attained, are shown in
Fig, 2.20, Within the experimental range, the initial Jet
velnoity and the maximum height increase with increasing
charge dspth, For a 4200-1b charge at a scaled depth, Ad,
of about 0,5 ft/lbl/B, the jet 1s first observed above the
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narrow smoke crown at about 0,15 seconds, the initial Jet
velocity being of the order of 1500 ft/sec, At a scaled
depth A, of 0.135 ££7/162/3, the broad bushy leading edge of
the Jet is first observed above the wide bowl-shaped smoke
crown at about 0,0% seconds, The inltial jet veloclity is

of the order of 800 ft/sec, and decreases to about 150 ft/sec
after 0,5 seconds,

Deeper charges may produce multiple-stage Jets., A
4200-1b TNT charge fired on the bottom in 12 ft of water,
scaled depth Ay = 0.745 £t/1b2/3 (Shot 220), produced a
distinct two-stage jet, In this case the initial Jet
reached a maximum height of 920 ft at 2,3 seconds, and was
overtaken by a second Jjet which reachsd a maximum height of
1350 ft. This effect is l1llustrated in Fig, 2,21, and by
the jet height vs time curve (Fig. 2.20). A two-stage jet
resulted from Shot 303, a 3600-1b charge fired at a depth
of 5,29 £t in 8,42 £t of water (scaled depth Ag ™= 0.346
ft/lb1/3). In this case the secondary Jjet did not overtake
the initial or primary Jjet,

Measurements of the minimum jet diameter, Jmin’ were
obtained whenever possible, the measurement being made while
the Jet was well defined and at a minimum width, Subsequent
to the time of measurement, the jet breaks up and collapses,
The data (see Appendix A) show considerable scatter, due
to obscuration of the early stages of Jet development by
the water column and the smoke crown, (The outline of the
Jet 18 most clearly visible when the charge is fired betw.en
the cameras and the sun,)

In view of the large amount of scatter and irregular
nature of the available data, i1t i= not possible to determine
reliable formulas for the prediction of Jmin' However, the
results indicate that jJjet diameter decreases with increasing
charge depih., The data also indlcate that minimum jet

45
CONFIDFNTIAL

e e o o e Ml i i o e e a8



‘ ¥,
Lpedd . ¥ .J\
NOI1VWYHO4 13r 3dILTAN e 914 T
(g, 8V/1d9¥€°0= 9Y) 14 62'S = H1d3d 3IOUVHO INL 81-C09E =M <
id 2b 8 = Hid3Q H3ILVM SOE ON LOHS w b
. 1
038 St~ 238 87 A 23S £°2 A 938 §°Iny t ;
;
!
it
i
L
¥
Z 13f M
/./ }
~
4 \ 2i3r 1130 w
2 z i3r "
- 1 130 N._ i
g 1430 = b
o~ - .
NC > “
ik « © uw (R
Ow ; <+ e b
= 1 13°P w {-
z0 z .
Wm {g,,871/14 S¥2°0=PY] WO11l08 NO JOYVHO ANL 87-002¢ = M 9 T
= 1421 = H1d3Q ¥3LVM 02Z°ON LOHS H
< 093 8'v~v 23S €2~ 238 v i~ 23S §'0n .m
,WM, 1\3
!
H
| r
Z i3r B W
1 43r W
2 13r i

[ e SR TR e e

- elEIID . FIOLT L o ek o GRAS
5 P e wAY &m...w;&

5 P ot '« -

s




. 2
P T

CONFIDENTIAL
NAVORD Report 2987

diameter is directly proportional to the cube root of the
charge welght when charges are fired at the same scaled
depth,

As the range of the data presented here is relatively
limited, it would be of interest to obtain sonme informsation
concerning Jjet formation by explosions at somewhat greater
depths,

Measurements of maximum plume height have been reported
by Johnson and Chinn [11] for 1-1b spherical sharges of
Composition C-3 exploded at various depths in water ranging
friom 0,1 to 4,0 ft in deptn, and by Kolsky, Sampson, Snow,
and Shearman [12]) for 1-1b approximataly spherical charges
of Nodel's plastic explosive No, 808 fired in 11,0 ft of
water, The data are presented in Fig. 2.22 in the form
of Jnax V8 charge depth at different water depths, "Plumes"”
from 1-1b charges at the depths shown are similar to the
"jets" reported hera, At greater depths, plumes with
different characteristics would be formed,

The data shown in Fig.2.22 all tend to indicate a
maximum jet height at a 1 ft charge ‘derch, which corresponds
to a sceled depth, ) , of about 1 /16173, mhis 1s an
interesting result, as the charges were fired in water
depths ranging from 0.1 ft to 11,0 ft and include a few
that were detonated above the surface and several that
were buried in the bottom, The NOL data are not extensive

enough to scheck the validity of the result for larger charges.
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CHAPTER III
BASE SURGE

3.1 Description of the Base Surge, The base surge is formed
by the descent of the water column thrown up by an underwater
explosion and the subsequent radial outflow of the column
materlial along the water surface, The surge consists of

water droplets suspender in air and resembles a cloud or a
fog. As 1t flows outward, 1t increases in height, During
this process, the surge mixes with the surrounding air,
becomes thin and tenuous at the outer parts, and gradually
evaporates,

At ex%remely shallow charge positions, detonation
products enter the base surge in considerable amounts, The
surge 1s gray or black if appreciable quantities of carbon
are present, and resemblns a "smog" in appearance,

The high explosive charges fired underwater in the NOL
programs have produced base surges that were initially similar
in appearance to the base surge cbserved at Test Baker (see
Fig. 3.la). A later view of the Baker surge formation is
shown in Fig, 3.1lb; this was obtained from an altitude of
12,000 ft at 41 seconds after the detonation, when the surge
had grown to a radius of 3600 ft and a height of 650 ft, and
shows the torus-like form of the surge cloud,

Figure 3,2 1llustrates base surge formation by 60C-1b
and 4200-1b char;es scaled to the Baker charge and water depth,
It should be noted that material falling from the Jjet and
amoke crown enters the buse surge after the column has
disappeared,

In Fig. 3.3 the formation of base surges at two charge
positions close to the extremes of the experimental range
for 4200-1b bottom explosions is i1llustrated. The upper prints
show the dark "smog" surge formed by an explosion in 1,83 ft
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of water (Ad = 0,114 ft/lbl/B) and the lower show the
white surge produced by an explosion in 9,25 ft of water
(Ad = 0,574 ft/1b1/3). The contrast between the phenomena
in Fig. 3.3 can be clearly seen and 18 indicated by the
following table of data; for comparison, the data from the
4200-1b shot shown in Fig, 3.2 are included.

. TABLE 3.1
COMPARISON OF SURFACE PHENOMENA FROM 4200-LB
EXPLOSIONS AT DIFFERENT DEPTHS

e ol -
‘aw‘&é;‘a‘:'_;\a T

Nﬁgg:r g:gtgd %Kggge Dmax cmax Jmax Pmax Hmax 5
(££/1b>/3) (££)  (£t)  (£t)  (£t)  (£t)
280 0.114 85.4 51 870 345 184
221 0.574 114,0 231 1130  >u469* 92
279 (Approx, scaled 99,6 156 685 322 104
to Baker)

Table 3,1 indicates the increased size of column, Jjet and ‘
base surge when charges are fired at increasing depths within !
this range,

*  When the "greater than" symbol 1s used with maximum surge
radius, Rmax’ it means that the surge exceeded the photographic
field of view while expanding, or was carried out of the field
by winds, so that a final determination of surge size could

not be made., In addition, it should be noted that the

reported values of Rmax and maximum surge height, Hmax'
represent the maximum visiblie extent of the surge cloud,
There 18 evidence that the cooled alr in the surge continues

to propagate after the water droplets have evaporated [13].
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The greatest scaled depth at which charges were fired
in the NOL programs reported here was at a A equal only to
2.17 £t/1b%/3 (Shots 45, 46, and 65). E.tamplea of surge
formation at scaled depths of 1,09 ft/1b 1/3 and 2.15 ft/1b1/3
are shown in Fig. 3., However, base surges have been
observed at deeper charge positions,

3.2 Surge Radius, As the smaller TNT explosions usually
formed base surges that were tenuous, brief in duration, and
difficult to measure, most of the surge analysis in this
report 1s based upon data from 600-1b and 4200-1b charges.

A plot of base surge radius versus time for four 600-1b and
four 4200-1b charges fired on the river bottom at shallow
depths 18 presented in Fig. 3.5. Water depth and shot number
are indicated at the end of each curve; data for mid-depth
shots scaled to the Test Baker geometry are included for
comparison., It can be seen that within this range of scaled
depths (0,114<A,< 0,745 ft/lbl/ 3) base surge rate of growth
and maximum -xtv”t increase with increasing depth of firing.
This is consistent with the fact that maximum column diameter
and maximum column height increase with increasing charge
depth (see Sec. 2.5), since a higher and hroader column
produces a larger and faster base surge. It also appaars
that the Baker condition was probably not the optimum and
that placing the atomic bomb on the bottom of the lagoon at
Bikini might have produced a larger base surge,

Figure 3,6 1llustrates that the same depth effect for
base surges results from 100-1lb TNT explosions,

A plot of all maximum surge radius deta versus scaled
charge dept’ for charges on the bottom ia shown in Pig, 3.7.
The 1imit of scaled depth in which smog surges were formed
is delineated for each charge weight by a vertical dashed
line, There 18 obviously a considerable degree of scatter
in these measurements and there is only a slight indication
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SCALED CHARGE DEPTH A, (FT/LBY)

(CHARGES ON BOTTOM)
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of an increase of maximum surge radius with increasing
depth. However, since there 1s an increase in initial
surge radial velocity with Increasing depti, this increase
of radius 1s probably real, (Wind is one of the major
contributors to the scatter in base surge radlal growth
measurements ,* Some effects of wind on the base surge are
shown in Fig, 3.8, 1In addition, splashes due to throwout of
mud and rocks frequently obscure and distort the tenuous
leading edge of the surge,)

By grouping the data, 1t is possible to obtain the
following empifical expressions for R which may be used

max
for approximate predictions within the range of variables

indlcated:

Ry = 10 wo-42 (A, = 0.26 rt/163/3) (24)
Rogx = 20 wl/3 (0.11< A;< 0.26 rt/163/3)  (25)
R, = 8.2 w0+ 49 (0.53<Ay< 2.2 rt/161/3) (26)

The total surge extent 1s greatly affected by atmos-
pheric conditions which cannot be scaled., A welight effect
must also he considered and it will be shown in Chapter VI
that larger charges form surges which extend to a greater
scaled maximum radius than smaller charges., The surge radius
18 therefore not simply a function of scaled charge depth.
3.3 Surge Height. The irregular but continuous lncrease
in the height of the surge clouds from high explosive under-
water detonations 18 initially similar to that of the Test
Baker surge., This behavior is shown in Pig, 3,9, a plot of
surge height versus time for 4200-1b and 600-1b TNT charges.

¥ It has been a general policy in field tests to fire only

during periods of light wind or calm. However, thls was not

always possible, and in a few cases shots were flred on windy
days to study the effectz of wind,
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3 SEC

|
SHOT NO. 272 X 420.405 F1/LRY

s bepTh . 3.42 FT WIND VELOGITY » Il KNOTS

FIG. 38 EFFECT OF WIND ON BASE SURGE
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Values of Hmax reportad here represent the maximum average
helght of the surge cloud as visible on photographic prints,
Due to the presence of carbon particles, smog surge heights
are measurable for relatively long periods, The tops of the
"clean" surges from small scale TNT explosions quickly become
extremely tenuous due to mixing with the surrounding air and
evaporation of the water droplets.

That there 18 any effect of charge depth upon the rate
of growth of the surge height or the maximum height attained
is not clearly apparent, This may be seen in Fig. 3.9 and
also in Fig. 3.10, a plot of Hmax in £t versus the scaled
charge depth, Ad in rt/lbl/g,for charges on the bottom,

Plots of Hmax in ft versus the cube root of the charge
welght in 1bs show the following relationships 2t the indicated
scaled depths:

Hoop = 1.9 WO 45 (A, = 0.26 rt/16/3) (27)
Hooo = 1.9 WO-45 (Ag = 0.26 rt/10%/3) (28)
H = 2.4 w05 (g = 0.53 £t/1p1/3) (29)
B = 2.2 WS (0.75< Ag< 2.2 T5/162/3)  (30)

These formulas indicate a slight increase in surge
helght with depth of firing to a Ad of 0,53 ft/lbl/B, and
some decrease in height at greater depths; they are probably
not valid if extended beyond the range of weights and dGepths
used in this analysis,
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CHAPTER IV
EFFECTS OF SHALLOW CHARGE POSITIONS

4.1 Characteristics of Smog Surges, When a charge is fired
on or near the water surface, or is only partially submerged,
the explosion products are vented directly to the atmosphere
and solid smoke particles enter the surge cloud. If an
appreciable amount of carbon is produced, the base surge 1is
gray or black in appearance and rescmbles a smog., The
proportion of sollid contaminants in the surge increases with
decreasing charge depth,

"Smog surges" remain visible after the water droplets
they contain have evaporated., They can be measured for
relatively long periods and their behavior studied after
gravitational flow has ceased, and until they are dispersed
by atmospheric turbulence, An example of a smog surge
produced by a 4200-1b TNT ciiarge on the bottom in 1.83 ft
of water ( Ay = 0.114 ft/1b1/3) was shown in Fig. 3.3.

Figure 4,1 shows smog surges produced by 100-1b TNT
charges fired at zero depth (bottom of charge level with
water surface) and with 10 inches of the charge submerged.
At the shallower charge pusition a surface smoke cloud is
blown radially along the water surface at detonation, and
the surge which forms later at the base of the falling
column propagates into the surface cloud, mixes with 1t and
pushes it outward. This surface detonation cloud was not
observed when 100-1b TNT charges were fired with more than
3 inches of the charge submerged.

In some blamting gelatin explosioris, white surface
clouds and bamse surges were formed at smog depths., The
white color was due to chalk, which was used as a filler
in the explosive, The surge behavior was similar to that
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005 skEC 0.05 SEC

2 SEC 2 SEC

o 45 SEC

I7 SEC 16 SEC
SHOT NO. 25| SHOT NO. 160
WATER DEPTHx1.03 FT WATER DEPTH x1.83 FT
GHARGE ON SURFAGE 10 IN.OF GHARGE SUBMERQED
Ags~0.116 FT/LBY A * +0.062 FT/LB
. FIG. 4.1 SMOG SURGES FORMED BY 100-L.B TNT CHARGES

FIRED AT SHALLOW POSITIONS
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of the dark, carbon-laden smog surges from very shallow

TNT explosions,

4,2 Lffects of Charge Depth and Water Depth., A series of
34 100-1b TNT charges was fired at shallow positions in
shallow water (1.1 to 5.3 ft) and deeper water (15 to 16 ft)
to study smog effects. Charge position was varied system-
atlically from Just above the water surface to complete sub-
mergence. In addition, photographic records of a group of

7 100-1b surface shots fired in water from 24 to 30 ft deep
were obtalned from another NOL program., A smog surge was
observed in all cases in which part of the charge was above
the water surface, With zero to 2 inches of water above the
top of the charge, smog surges were observed from roughly

R0 percent of the shots, With slightly more than 2 inches of
water above the top of the charge, "clean" base surges composed
of water droplets and contalning no visible traces of smoke

were observed,

Surge radius versus time curves for this shallow seriles
are presented in Fig. 4,2 (water depth 1,1 ft to 5.3 ft) and
Fig. 4.3 (water depth 15 ft to 30 ft). In general, the rate
of growth and maximum extent of smog surges increase with
increasing water depth beneatli the charge. A similar effect
i1s obtained when charge submergence is in:reased in the same
depth of water,

The initially large surge radius indicated in Figs. 4.2
and 4,3 for Shots 251, 266, 172, 174, 175, 176, 170, 139 and
168 1s due to the surface smoke cloud described in Sec. 4.1
above, Part of this cloud extended beyond the true base
surge, thereby resulting 1n an apparently greater surge extent,.
Attempts to excluue this leading material in making surge
measurements were not successful,

When 100-1b TNT charges were fired at shallow smog
positions in deep water, an upheaval was observed at thc base
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of the column between 1.5 ard 2.0 seconds, indicating that
not all the explosion products are vented directly to the
atmosphere at detonation, as occurs in shallow water, The
carbon-laden material in the secondary venting mixes with the
falling column material during the initial stages of surge
formation, This phenomenon is 1llustrated in Fig, 4.4. It
was also observed in Britain in experiments with 1-1b and
10-1b charges [12].

The maximum column diameters formed by 21-1b and 100-1b
explosions fired with the bottom of the charge level with
the water surface over the range of scaled water depths from
0.50 £t/16Y/3 to 3.45 £t/16%/3 can be related to charge
weight in the following way:

Dy = 14.9 WO 147 (31)

where Dmax is in ft and W 1s in 1lbs,

As formula (31) is based upon a limited amount of data,
1ts valldity over a wide range of charge weights 1s highly
questionable, However, it 1s probably significant that Dmax
is not a function of the cube root of the charge weight for
these surface shots,

Within the shallow water range of 1-4 ft, maximum Jjet
height increases with increasing water depth, for 100-1b
charges fired on the surface, Lower Jets are observed,
however, for 100-1b surface shots fired cn deeper water
(15-16 ft). This may be due to the incomplete initial
venting of the bubble in deep water, as can be seen from
the subsequent secondary venting of explosion products,
deacribed above,

Smog surge radius versus time curves for charges on
the bottom in very shallow water (0.11< Ay<0.26 £t,/16%/3)
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4 SEC
SHOT WNO. 151 TOP OF CHARGE LEVEL
W= |00~LB TNT WITH WATER SURFAGE

WATER DEPTH = |8-FT AG'OIZB FT/LB‘S.

FIG. 4.4 SECONDARY VENTING OF GASES ,
(SHALLOW EXPLOSION IN DEEP WATER)
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are shown in Fig, 4,7, In general, the same trend of steeper
curves and greater maximum extent is observed as water depth
is increased,

A study of smog surge helght versus time curves showed
no clearly defined effects of charge depth or water depth on
this parameter, within the range of 0.11<2Ad<10.26 ft/lbl/B.
The tops of the smog surges show a tendency to rise in
irregular tufts after the surge radial growth has ceased., In
general, the maximum visible heights of smog surges are
greater than the maximum visible heights of "clean" surge
clouda by a factor of about 2.

Maximum column dlameter, maximum column height, maximum
Jet helght and maximum surge height are plotted against the
cube root of the charge weight in Fig. 4,6 for explosions on
the bottom in shallow water in the range of 0,1i< Ad<:0.26
ft/1b1/3‘. The empirical formulas for the data are:

D= 6.7 WIC? (0.11< A< 0.26) Xy = 0.15 ££/16%/3  (32)
Cpax = 5+5 W72 (0.11< A;<0.26) Xy = 0.15 re/10Y/3  (33)
Ty = M0 w3 (0.11< Ag<0.26) Ky = 0.15 re/10%/3  (34)

0.46

==

4 = 0.15 £e/16%/3  (35)

>]
]

= 3.8 W (0.11< A <0,26)

max
An indication of the differences between the surface
phenomena in the smog range and the surface phenomena at
slightly deeper charge positions where snog was not observed
may be obtained by comparing the formulas listed above with
those given in Chapters II and III, For example: for the

1=

* Jt¢ should be noted that the scaled depcth limits within
which smog svrzes were formed vary for different charge weights
because of the differences in the shapes of the charges used in
the experimental program (see Sec, 1.3).
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same charge welght, is larger in the smog range than
at Ad = 0,28 r£t/1b /qa( ‘ormula 8) and Cpax 18 less in the
smog range than at A = 0,27 !‘1‘./"J.b1/3 (formula 15), in-
dicating relatively broad "squatty" columns for explosions
in very shallow water, J x is less in the smog range than
at Ky = 0.28 rt/1b1/3 (formuia 20) and both ¢ _ and J___ i
follow the general trend toward lower values with decreasing {
water depth (see formulas 14 and 23). Dpax data show a }
reversal of this trend (shown in formula 11) and increase . i
when water depth decreases below the smog limit, !

The magnitude of H . indicated by formula (35) is !
roughly twice that observed at Ag = 0.26 £t/1b /3 (formula 28) !
due to The presence of smoke particlen, which remain visible
untll their concentration has baen greatly reduced by turbulent
diffusion,

Results from 100-1b TNT and blasting gelatin explosions
at or near the surface of the water, indicated that the
maximum radius, Rmax’ of the surge cloud 1s increased by a
factor of 2 or more when part or all of the charge is exposed
to the air and smog effects occur (see Fig. 11, Reference 3),
However, this effec. is not observed with shallow bottom shots,
and smog surges formed by bottom explosions in the shallow
depth range have about the same radial extent as the "clean"
surges from slightly deeper bottom shots; formula (25) applies
equally well to both these conditions. Explosions at the

greater depths considered in this report form larger surges,
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CHAPTER V
EFFECTS OF PARTIAL BURIAL OF CHARGE

5.1 Experimental Data, The scaling of atomic bursts in
shallow water with high explosives 1s extremely difficult,
if not impossible, due to the relative sizes of conventional
and atomic weapons, For example: a nominal atomic bomb at
the bottom of a 40 ft harbor would be completely submerged,
whereas a cubical 100-1lb TNT charge resting on the bottom

at the same scaled water depth would be in 6.5 inches of
water and would be half exposed to the atmosphere, Various
methods of improving the geometrical scaling may be used in
an attempt to achleve better similarity of the surface phe-
nomena and other effects., These include lowering the center
of gravity of the charge by changing the charge shape, in-
creasing the water depth, or partial burial of the charge in
the bottom,

In an attempt to apply the latter technique, four of the
4200-1b charges and one 600-1b charge fired in the NOL Danlgren
program in the fall of 1952 were partially buried in the river

id Anm e

PO

bottom, For additional data, photographic records of ten
buried or partially burled charges fired in a Waterways
Experiment Station program [9] were obtalned for analysis,
These charge weights ranged from 32 1bs to 2100 1lbs (see
Appendix A).

The Dahlgren results are listed in Table 5.1, Charges
fired on the bottom in similar depths of water are included
for comparison and data from three 256-1b W,E.S. tests are
also shown, (The photographic fields of view of the W.E.,S,
cameras were not adequate for measurements of all of the
surface phenomena,) All of the shots listed produced smog
surges ercept Nos, 214, 215 and 298,
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5.2 Discussion of Results, It is difficult to isolate 7{:
the effects of charge burial with the limited data available. jd{
One of the more obvious results is the increase in the amount roL
and extent of radial throwout, which is illustrated in Fig.
5.1, Cratering tests at W.E.S, [9] have shown that crater
dimensions increase when a charge is buried in the bottom,
which indicates an increased throwout of bottom material, s%

The initial velocity of rise of the smoke crown (venting -
velocity) appears to increase with increasing burial of i
4200-1b charges, and narrower smoke crowns are formed by buried
4200-1b charges than by bottom shots, However, the 256-1b
charges showed the opposite trend when the explosions occurred
telow the bottom,

Ro significant effects on maximum column diameters can ﬁ
be observed, but the data show an increase in column height ﬁﬁ
with increasing burial of the charge, i

The Jets formed by partially buried charges are broad
and bushy, and generally similar in appearance to the Jets
produced by bottom shots in the same depths of water.,

Maximum jet heights show considerable scatter but are not <A
significantly different. The development of the Jjets formed 4
by a 4200-1b and a 600-1b partly buried charge is shown in
Fig. 5.2.

The base surges formed by partially buried charges in
the shallow depth range considered here are more tenuous and
less clearly defined than the surges formed by chargess placed

o on the bottom., Surge radial growth data for two on-bottom
ﬁi@ and three partially buried 4200-1b charges are presented in
L Pig. 5.3 and tend to show that smaller surge clouds are
formed by the burisd charges. This reduction in size ia due
to a reduced carbon content and also to the heavy radlal
throwout of rocks and bottom material, which disrupts the
colunn and tends to interfere with base surge formation and
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Ny e T T L
K-25 CAMERA 65 5EG

SHOT NO, 294

W:4200 LB TNT

WATER DEPTH = 2.6% FT
CHARGE DEPTH » 2.51 FT
Ne *0:156 FT/LBY

1.0 SEC

FIG. 5! COLUMN FORMATION AND RADIAL THROWOUT
BY PARTIALLY BURIED CHARGE
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growth, The tenuous nature and small extent of the smog
surges resulting from Shots 295 and 297 (61.7 and 32.2 percent
of charge buried, respectively) may be seen in Fig. 5.4,

Although the data in Chapter III show a tendency for
base surges to decrease in slze when charge depth 1s decreased,
the trend does not continue into the smog range, due to the
presence of smoke or other sollds in the surge cloud, As
large quantities of smoke would not be present in the surge
formed by a shallow nuclear detonation, a base surge of
relatively small extent would be expected,

The smaller surges formed by the partially buried TNT
charges apparently contaln 1ittle carbon, and probably
constitute a better scaling of nuclear bursts than the smog
surges formec by shallow bottom explosions, In this respect,
scaling has been improved by charge burial, A quantitative
check on this cannot be made until shallow water nuclear
explosion data become available,
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CHAPTER VI
THE GENERAL SCALING PROBLEM

6.1 Scatter of Data, The measurements of the surface
phenomena presented here show considerable scatter, due to
the impossibility of controlling all conditions in field
experlmentation and also to the difficulties of measuring
the phenomena. The base surge in particular may be some-
what tenuous and irre;ular in shape and 1s easily distorted
by winds and atmospheric turbulence. Fallout material from
the smoke crown and Jjet and splashing due to the radial
throwout of #0ll and rocks also tend to disrupt and obscure
the base surge,

Although some subjective Jjudgmenv enters into the
measurement of records, all of the NOL data analysils was
completed by one person, in order to maintein internal
consistency. The criteria to be followed in obtaining the
critical measurements were agreed upon in conferences among
the project personnel and consultants, and intermittent
checks by others were made,

An indication of the degree of dispersion of data is
given in Table 6.1 which presents the results of two groups
of 100-1b explosions, cne group scaled geometrilcally to
Test Baker and the other fired on the bottom in the Baker
scaled water depth. The number of shots in each groun is
large enough so that the results may be treated with
confidence.
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TABLE 6,1

No,., of
Values
(N)

Range

Arith.
Mean

(X)

Standard
Deviation
(o)

Coefficlent
of Variliation
(v)

A. Charge at Mid-depth in 2,5 ft of Water
(A, = 0.26 £t/16/3)
Dpax (ft)| 13 | 27.3-37.0 | 30.9 2.93 9.5
Crnax (rt) | 13 30,0-47.0 38,2 4,87 12.7%
Rmax (£t) 7 50,0-113 70.5 20.9 29,64
Hoox (£t) 5 8.8-18,6 15.1 k,o 26.5%
B, Charge on Bottom in 2,5 ft of Water
((Ag = 0.54 rt/1b1/3)
D ax (£t) | 24 27.8-40.4 33.4 3,50 10.5%
Coay (T8 | 29 | 32.7-59.0 48,9 6.15 12.6%
Roax (Ft) ] 17 35.2-120 77.8 23,1 29.7%
Hoax (F8)| 19 | 12.0-27.5 | 19.K h.29 22,1%

Column diameters and heights are fairly reproducible
but the base surge measurements show a high degree of acatter,
for the reasons noted previously.
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In many figures in this report, the arithmetic mean,
the standard deviation of a single observation, and the
standard devistion of the mean are indicated, The coeffi-
clents of variation obtained from the data used in the
preparations of Figures 2,12, 2,14, snd 2,18, which represent
the Baker scaling, are presented in Table 6.2 to indicate
the effect of charge welght on the degree of scatter. No
value is given when fewer than 4 observations are available,

TABLE 6,2
COEFFICIENTS OF VARIATION OF DATA
FOR CHARGES SCALED TO TEST BAKER

(A, ¥ 0.26 £t/1p%/3)

W Dmax Cmax Jmax

21-1b (9) 11.1% (8) 16.3% (6) 5.09%
100-1b | (13) 9.5% (13) 12,7% -
4200-1b (5) 2.59% (5) 11,9 (5) 9.82%
Mean ' T.73% 13,68 7458

( ) No, of shots
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The degree of scatter of data for bottom shots is shown
in Tahle 6,3, No value is given when fewer than 4 obser-
vations are avallable,

TABLE 6.3
COEFFICIENTS OF VARIATION OF DATA FOR BOTTOM EXPLOSIONS
W Dmax Xﬁ Cmax Xﬁ | Jmax Xh
21-1b (11) 12,664 0.28 | (6) T7.206 0,27 — _—
(12) 8.51% 0.54 | (10) 15.8% 0.54 —- _—
(9) 4’.0.% 1059 - - - Lo -
100-1b (7) 5.91% 0.27 |(5) 15.,3% 0.27 — -
(24) 10.5% 0.54 |(19) 12,66 0.54 —— -
(5) 8.72% 1,46 —— - ——— -
600-1b (5) 5.106 0,29 [(4) 21,48 o0.29 |(5) 5.09 0,29
(6) 6023% 0059 (6> 11.% 0059 o= - - -
4200-1b | (5) 4.47% 0,27 |(4) 15.68 0.26 |(4) 6.23% 0.26
() 2,926 o.,54 [(4) 14,26 o0.54 |(4) 4.708 0,54

( ) No. of shots

Tables 6.2 and 6,3 indicete a decreasing dispersion of
data with increasing charge weight, This 18 due 1n parf to
the smaller number of tests with large charges, but prokably
indicates that a greater degree of confidence in the large
charge results is in order, This is to be expected, because
of the more extensive photographic coverage and the better
definition and longer duration of the phenomena in the 600-1b
and 4200-1b shots.
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6.2 Scaling of Column and Jet, As the behavior of the base
surge is related to the slze and structure of the column and
Jet, it 18 imporiant to consider the usefulness of Dmax’
cmax’ and Jmax as scaling parameters, In particular, the
coluwn diameter seems to be the most Important indication of
similarity between explosions of different charge weights
fired at the same scaled depth .

For charge weights ranging from 21 to 4200 1lbs, the
maximum column heights, column diameters and jet heights are
all proportional to the cube rcot of the charge welght when
shots are fired at the same scaled depth., However, the data
show varyirz degrees of scatter, Dmax is the most reproducible
dimension, with a mean coefficient of variation of about 7.7%
at the Baker geometry, Extrapolaticn of the high explosive
results to a 20 kiloton charge ylelds a Dmax value of 2310 ft.
The observed value at Test Baker was 2030 ft, which is 12%
less than this., However, 12¥ is less than twice the standard
deviation, and the value falls within the range of scatter of
the high explosive data,

Thus, the available evidence indicates that column
diameters i r2 a reliable scaling index for atomic weapons
at mid-depth in shallow water, This is probably also tiue
for bottom explosions in the shellow range of water denths,
The usefulness of Dnax for the scaling of surface bursts is

somewhat uncertain,

*  High agood motion pictures of the explosion of charges
weighing 0,1 gram, fired in a tank at a depth scaled to Test
Baker and similar depths, have shown that the inner wall of
the column is continuous with the expanding gas bubble beneath
it [2]. Thus, for shallow underwater explosions, scaling of
maximum column diameter may indicate that maximuwm bubble size
is also being scaled,
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Th= Baker measurement of Cmax (2000 £t) was 31% lower
than would be predicted by extrapolation of high explocsive
data (2910 ft) and the observed overall height of the surface
pheriomena at Bikini (8000 ft) was 64% less than 22,500 ft,
the value scaled from the TNT data. These are far beyond the
observed range of scatter,

These helghts do not scale from the high explosive
tests in a simple manner,as the maximum column diameter does,
That the Baker maximum column height is low2r than would be
predicted may well be due to a difference in behavior of the
smoke crown, which could have obscured & greater proportion
of the t)p of the Baker column., Since there was nc central
Jet at the Baker test, it 1z not surprising that the over-all
height was lower than would be predicted., In addition, the
heights of the column and Jet would not be expected to scale
as a function of charge weight over a wide range of weights
because the retarding effect of gravity becomes increasingly
important when charge weight is increased, In addition, the
effect of alr resistance would not scale to charge weight
simply.

A more detailed discursion of column and jet formaticn

and the mechanisms involved will be presented in Reference [13].

6.3 Scaling of EBase Surge, The base surge is formed by the
collarse of the water column formed by undewater explosions,
Consequently the rate of growth and maximum extent of the
surg- are dependent upon the maximum height and diameter
attalned by the column, as shown in Chapter III, .

It has been assumed {1] that tre base surge is simply a
gravity dominated flow, in which the potential energy of the
,column is converted to the kinetic energy of the surge, If

- this is correct, the scaling of the surge cun be characterized

by the Froude number.
In a gravity flow of a fluid beneath an ambient fluid
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of leaser density, such as the flow of the base surge through

the atmosphere, the Froude number is defined as:

v2

«(5)

F =

where V radial velocity of surge
g = accelaration du= to gravity
density of surge
Po density of atmosphere
L = a characteristic length

R-)
"

In base surge studies, the maximum column diameter,

Dmax’ is used as the characteristic length for scaling

purposes and equation (36) becomes:

2
F = v
g crDmax
here o p1°°
' A . = OP—
2

(37)

(38)

76)

In order to plot a dimensionless radius-time curve for

base surge propagation with Froude parameters, the instan-
taneous radius, R, is reduced by the characteristic length
Dmax’ giving:

r o= RDnx
Since g is unchanged in the experiments, it can be omitted

If the assumption is made that & also remains unchanged, a
simple expression for scaled time, T, can be derived:
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r = /2 (40)

The derivation of these terms and others used in the
scaling of the base surges from high explosives and liquid
models has been presented in Reference [3] and ias shown in
a different form in Append’x C,

It was shown in Chapter III theat increasing the depth
of firing of high expiosives results in the formation of
larger and faster growing surges, Plotting the data frém a
group of 4200-1b and 600-1b shots fired at different depths
in the form of r vs T, as shown in Fig., 6,1, gives a group
of curves with the same general slope, indicating that the
scaling technique is valid for reducing the data from
explosions of different charge weights and depths,

The reduced radius-time data from explosions of different
weights scaled to Test Baker is presented in Fig, 6.2, The
effectiveness of the scaling procedure is demonstrated here
also and it should be noted that the mean trend of the data
points is the same as in Fig. 6.1, where various charge depths
were used,

It 1s evident that the base surges from high explosives
fired underwater at greater than smog depths can be scaled
effectively by the use of simple¢ Froude parameters. In both
figures, the Test Baker measurements are indicated in the form
of a smooth curve, reduced in the same manner, The Baker
data were obtained from measurements reported by Isaacs, Wisgel
and Chinn [14]) and by Roger Revelle [15] and are presented
in Appendix D,

The TNT data show good agreement with the Baker result
to a T of about 1.5 tlec/'rt;:"/2 but indicate a continued growth
at about the same rate while the Baker curve tends to level
off,
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Figure 6,2 indicates the increasing length of the r
vs T curves when charge weight is increased, The relatively
short curves for the 100-1lb explosions are within the area of
good agreement with the nuclear test and the experimenter 1s
misled into believing that the Test Baker base surge cun be
scaled effectively with high explosive models, The 600-1b
and 4200-1b results indicate a major deviation of surge
behavior from the Test Baker curve, which was not shown by
smaller charges, This example serves tc indicate the possible
danger of attempting to duplicate large-scale tests with
small exploslons, or attempting to extrapolate all of the
effects of charges of a limited weight range to large-scale
experiments.

The implication of this result is that the initial
driving effects are similar in the high explosive shots and
in Test Baker, Physically, this means that the water columns
formed by the two types of explosions can be considered to
be geometrically similar, However, the central jet formed
by high explosives was not cbserved at Baker and the overall
height of Baker was only about 1/3 as great as would be
expected from an extrapolation of TNT results,

At Bikini, the water column subsided to form the base
surge, which flowed outward radially to a maximum extent of
about 840G ft, No further growth was recorded, though it 1is
possible that a very slow expansion coritinued, Large masses
of material fell into the surge from the cauliflower cloud,
mostly within a ring extending from about 1500 ft to 4500 £t
from the zero point,

In the high explosive experiments it has been observead
that the water column collapses to form the primary base
surge, This initial fliow 1s similar to the Baker surge and
is represe¢nted in scaled form by the r vs T curves to a vt cof
about 1.5 sec/?tl/é. However, the Jet and part of the smoke
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crown then fall into the ceater, The heavier water masses *
drop back into the underlying water surface but material
which has been broken into fine droplets and particles flows .
outward along the surface, similarly to the primary surge.
This aerosol provides additional impetus to the surge flow,
causing it to continue at a fast rate well beyond v = 1.5
until the cloud has dissipated,
The vertical growth of the base surge from high
explosives can also be scaled effectively by the use of
Froude scaling methods, As the upper surface of the surge
is irregular and the growth is not continuous, there 1is
considerable scatter in the results, In addition, the upper
surface 1s more subject to atmospheric mixing than the leading
edge of the surge,
Surge height can be reduced in the same manner as surge
radius, thus:

h = HMD . (41)

and the data plotted as a function of t, as shown in Fig. 6.3,

The high explosive data scatter widely and do not show
any systematic weight or depth effects, They do not show
good agreement with the Baker result, but scaling can be
improved by introducing column height into the Froude
parameters in the following manner:

h' = H/(Coy, Dpar)? (42)
v o=t C;éé max (43)

Presenting the data in this fashlon (Fig. 6.4) ylelds
fairly good agreement betw: :in TNT and nuclear results,
However, the physical behavior of the model and prototype
surges 18 considerably different. The high explosive surges .
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rise and become increasingly tenuous until mixing and
gvaporation are complete., The Baker surge did not appear
to evaporate at its upper surface, but showed evidence of
the condensation of water vapor within the surge cloud as
the surge top rose above 1200 ft, When the upper surface
rose above 1500 ft, a new cloud deck formed above the surge
in the amblient air thatv had been lifted from the surface,
Thus, any measurements of the heilght of the Test Baker surge
made above the 1200 ft level were affected by th~ amblent
meteorological conditions and comparison of these with high
explosive results is not valid,

Smog surges f'ormed by bottom explosions in very shallow
water can also be scaled in the form of r vs v, as shown in
Fig. 6.5. These data show a greater degree of scatter than i
the data from shots fired in deeper water but have the same
general slope, The scaled height vs scaled time data
(Fig. 6.6) show the exceptional vertical growth of smog surges
due to the carbon content, which remains visible after the
water droplets in the surge have evaporated.

The scaled radial growth of the surges from four
partially buried charges are compared with the Baker scaled
growth in Fig, 6.,7. The data show a tendency toward slower
nsurge growth with increased charge burial, which is probabiy
due in part to a2 decreased smoke content, as indicated in
Seec. 5.2, i
€.4 Scaling of Surface Shots, Measurements of the radial
growth of the base surges formed by 100-~lb charges fired at
shallow positions on or near the water surface are shown in
Fig. 6.8, reduced in the form of r vs v, The records are
exceptionally long for charges of this size, due to the smog
nature of the surge clouds, When scaled 1n this manner, the 4
growth curves for explosions 1n water from 2 to 5 ft deep '
show a similarity in slope to the Test Baker curve, The
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scaled surge growth curves for smog explosions in water 16 "
to 30 ft deep indicate a more raspid radial expansion, similar
-to that shown by deeper expiosions that are not smog-forming. s

The agreement between the data for explosions in
shallower water and the scaled Baker curve does not imply a
satisfactory scaling of the Baker condition, since there are
many physlical differences between both the initial conditicns
and the surface phencmena at the different scales, The scaling
of surface bursts will be discussed in Sec, 7.2.
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CHAPTER VII
THE PREDICTION OF LARGE SCALE EFFECTS

7.1 The Underwater Burst., The data presented in this
report have been obtained from explosions in relatively
shallow water, Scale-wise, the firing conditions would
correspond to the employment of atomic weapons in harbors
and in cosstal areas over the continental shelf,

Before an extrapolation of high explosive results to
nuclear weapons can be made, further consideration of the
scaling of explosicns in general 1s necessary. It is known
that an explosion in deep water forms a spherical bubble of
gases which expands to a maximum :1ze and then contracts to a
minimum, The bubble continues to nscillate radially while
rising to the surface where the exploslon gases are vented to
the atmosphere, (At great firing depths, the bubble loses
its identity before reaching the sirface,) The piume phenomena
appearing at the surface depend upon the phase of oscillation
of the bubble at the time of break-thrcugh [16],

The maximum radius attained by an underwater TNT
explosion bubble depends upon charge weight and total hydro-
static pressure in the following way:

Apax = 12.6 <c +w33>1/3 (44)

Venting depth may be defined as the depth at which the
gas globe wculd Just break the surface at 1ts maximum size,
It is therefore convenient to define shallow underwater
explosions as those occurring at less than the venting depth
(°‘<Amax)' In these cases, the globe of gaseous explosion
products vents during its initial expansion and no further
oscillation occurs,
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Venting depth 1s not a simple function of Aot For
very small charges it 1s roughly proportional to w1/3, but
for large-scale explosions venting depth 18 approximately
proportional to wl/h. Therefore venting during the first
bubble expansion cccurs at decreasing values of Ac as charge
welght 18 increased, For example: a 100-1lb charge will
vent during the initial bubble expansion at a scaled depth
as great as 3.48 £t/161/3, but venting de /oth for a 20 kiloton
charge 1s reached at a A of 1.55 fq/lb

The size and behavior of the column, Jjet, and base surge
are dependent upon the dynamics of the expanding gases and,
generally speaking, may be classed as bubble phenomena, These
surface phenomena may be scaled in terms of charge depth and
the cube root of the charge weight only within the shallow
depth range conslidered in this report,

For explosions in deep watcr, geometrical scaling
(in terms of Ac) is not valid for the study of bubble phenomena
and the resulting surface effects,

In the tests reported here the water columns formed by
high explorives filred within the scaled depth range of
0.2‘<Ad<:2.2 ft/'J.bl/3 appear during the initial expansion
of the explosion gases, As it 1a not reasonable to expect
that the formulas obtained are applicable beyond venting
depth, the range of applicability will be relatively smaller
for atomic weapons than for high explosives, This range is
shown as & funct.on of charge weight in Fig, 7.1. The
assumption has been made that the shallow depth limit of
Ag = 0.2 ft/lb1'3 obtained with high explosives fired on the
bottom 1is valid for the prediction of column diameters formed
by atomic weapons,

It has been noted in Sec. 6,2 that the observed Buaker
maximum column diameter (2030 f£t) falls within the range
of scatter of high explosive results., However, this 1s based
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on a nominal yield of 20 kilotons, As the cstimates of the
Baker yield are not irrsfutable, a corrected yleld might
place the column diameter beyond the range of scatter,
Therefore, 1t seems more realistic to attribute the apparentiy
low value of the Baker column diameter to a dif'ference in the
energy partition of high explosives and atomic weapons,
Formula (7) indicates that a TNT charge weighing about
13.6 kilotons would produce a column 2030 ft in diameter when
fired at a depth scaled linearly to the Test Baker condition.
The cube root of this charge weight in pounds 1is 301, 1In
order to predict column diameters for underwater nuclaar
explosions as accurately as possible it is necessary to
multiply formulas (7) and (11) by a correction factor of

39%73 , where wB is equal to the total energy release of the
W
B

Baker weapon, expressed a3 the equivalent weight of TNT in
lbs, The resulting squations are:

Dpax = 6:75 W3 (3%}/3> (45)
and

D = 8,01 w/3 ) 0.166 <;—:§}5> (26)
Equation (45) can also be expressed as:

Dpax = 2030 <-§;)V3 (47)

where D, . 1s in ft and W 1s 1n 1bs (INT).
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By observing the limltations in Fig, 7.1 it is possible
to predict maximum colurn diameters for explosions scaled to
Test Baker and for bottom explosions over a considerable range
of depths through the use of furmulas (45) and (46), Explosions
off the bottom would be expected to form somewhat smaller
columns than bottom shots, though the exact relationship is
not known., For practical purposes, it is probably sufficiently
accurate to use formula (46) for explosions off the bottom,
but deeper than A, = 0,2 ft/1b1/3.

wWhen the Rpedicted Dmax has been cbtained, the values
of Dmaz and D;ﬁi can be inserted into the Froude parameters
(r and t) used in the scaling of the flow of the base surge
and a predicted radius-time curve for surge growth will be
obtained.

It was shown in Section 6.3 that Froude scaling ie
effective for comparing the radial growth of the base surges
from high explosives and the Baker test to a T of about
1.5 sec/rtl/g. Subsequently, the surgea formed in the high
explosive tests grow at a greater rate, However, as the
scaling method is effective for reducing all of the TNT
results to a single curve, it is probably also reasonable
to assume that the Baker scaied curve 1s typical of nuclear
results in relatively shallow water and can be used to predict
surge growth for underwater bursts over the range of depths
given in Fig,. 7.%.

The smoothed values of r and t obtained from the Test
Baker scaled curve are given in Table 7.1, Formulas (39)
and (40) can be expressed in the following way:

R = »D (48)
1/2

t = «¢ Dmé; (49)
107
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TABIE 7.1
SCALED BASE SURGE DAYTA FOR TEST BAKER ~ SMOOTHED VALUES

Scaled Radius Scaled Time
r T
(dimensionless) (sec/Ttl/é)
0,60 0.22
0.80 0.30
1,00 0.40
1.25 0.53
1,50 0,70
1.75 0.89
2,00 1,09
2.25 1.31
2.50 1.57
2.75 ‘ 1.84
3.00 2,14
3.25 2.44
3.50 2.80
2,75 3.24
4,00 3.90
4,13 4,43

To predict the radial growth and maximum extent of a
nuclear base surge the predicted values of Dmax and Diai
are inserted into formulas (48) ané (49) and then multiplied
by the individual values of r and T listed in Table 7.1l.

The result is a iist of data points in ft and seccnds,
Examples of predicted curves obtained in this manner are
given in Fig. T.2.

The Baker data indlcate that the following relation

between maximum surge radius and maximum column diameter 1is

applicable to underwater nuclear dursts scaled to the Baker
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geomretly:

Koax ™ 4.13 Dpax (50)

The base surge behavior subsequent to the time of Rmax
1s dependent upon ambient meteorological conditions. An
analysis of these effects will be given in Reference [13].

It was shown in Sections 6.3 and 6.4 that a base surge
that propagates similarly to the Teast Baker surge on the
basis of Froude scaling, is formed by some smog shots on the
bettom or surface of the water when the water depth 1is
shallow, The reasons for this are not clear, but the result
is probably due to the formation of a wide Jjet by these
explosions, The column evidently does not converge rapidly
to Torm a narrow liquid jet, and thus behaves somewhat
similarly to the hollow Baker column, Another reason for the
relatively slow surge growth is the smaller amount of material
ejected into the air by the shallow explosions, However,
there are many physical differences between the smog surface
phenomena and the Baker phenomena and the agreement of the
scaled surge propagation curves does not indicate successful
scaling of Test Baker,

7.2 The Surface Burst. The scaling with high explosives

of the surface phenomena of nuclear bursts at the surface of
the water is questionable, because the thermal effects of the
fireball can not be reproduced, However, there may be quali-
tative similarities in effects, though the horizontal and
vertical extent of the clouds from nuclear surface shots are
not predictable by a simple extrapolation of high explosive
results,

Small scale experiments indicate that the expanding gasas
from a surface explosion form a hemispherical depression in
the water, and that a column of water is ejected into the air
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from the edge of the water cavity, This column tends to

be smaller than the column formed by an underwater burst in
the same depth of water, It was shown in Chapter IV that
surface TNT explosions form hase surges that contain large
percentages of carbon, Due to the carben content, the surge
growth can be measured for a long period of time,

By analogy with high explosive results it might be
expected th:i an atomic bomb exploded at the water surface
would produce a relatively small but highly contaminated
base surge, It also seems probable that the rate cof growth
and maximum extent of the surge would increase with increasing
depth of water beneath the charge,

At present, the only known example of a burst close to
the surface is the British atomic test in the Monte Bello
islands on 3 October 1952, The object of the test was to
investigate the effects of an atomic exploesion in a harbor
(17) and the bomb was detonated inside a frigate., The water
depth 1s not known at this time, but the water in the Monte
Bello area is generally shallow [18],

Photographs released to the press are reproduced in
Fig. 7.3 and show a small surge formation., A small surge
development was also observed on the fiim "Operation
Hurricane", which was released for public showing.

It was atated that the cloud at Monte Bello reached a
height greater than 2 miles., It is highly significant that
the base of the cloud remained at the water surface and the
entire cloud did not rise to high altitudes, In this respect
the phenomena differ in behavior from the clouds formed by
atomic bursts on dry land,

7.3 Conclusiona, The results obtained with high explosive
charges weighing up to 4200 1lbs indicate that the formation
and initial propagation of the Test Baker base surge can be
scaled adequately with such relatively small charges. However,
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FIG. 7.3 PHOTOGRAPHS OF BRITISH ATOMIC TEST
IN MONTE BELLO ISLANDS

(OCTOBEK, 1952)
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the subsequent growth and dissipation of the Baker surge
c¢loud can not be reproduced on a small scale, This 1s due
in part to the formation by high explosives of a central
Jet, which collapses and feeds additional material into the
surge, and also to large scale meteorolcgical factors which
were important at Bikini, but which do not influence the
surface phenomena from small charges,

The study of the surface effects of high explosives
has resulted in the accumulation of considerable information
about the dynamlics of column development and base surge
formation and growth, and has made possible the prediction
of the surface phenomena from full-scale weapons in relatively
shallow water, However, because of the inherent differences
between the nuclear and high explosive phenomena, there is
some uncertainty in the scallng method. In partlcular, the
value of high explosive models for the scaling of contamination
patterns 1s questionable because of differences in base surge
behavior.

Test Baker is the only underwater nuclear test that has
been conducted and all predictions of the effects of under-
water bursts are based upon the Baker data, combined with
theory and the results of high explosive tests, Although
the photographic coverage at Operation CROSSROADS was excellent,
the data concerning contamination by radioactivity'in the
Baker base surge are inadequate and controversial.

It 18 considered highly desirable to obtain more infor-
mation from shallow underwater nuclear bursts in order to
fully understand the role of the base surge as a carrler of
contamination and to extend the range of conditlons so that
predictions of the surface phenomena of atomlc weapons may be
more firmly established.
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APPENDIX B
FLASHBULB SCALE MARKERS

by
R. L. Willey 1

I. INTRODUCTICN.

To provide a distance scale on the film records, two
No. 31 photoflash bulbs were fired a known distance apart,
one on each side of the charge position, A trigger gavge
utilizing the underwater shockwave to close a circuit was P
designed to initiate the firing of the flashbulbs, ‘x

P

T

II, THE CAUGE,

1, Gauge assembly. The gauge assembly consists of the
gauge body, a connecting tube and the battery box (Fig. B-1).
The gauge body contains the diaphragm and contact assemlly.

It was designed to permit the use of diaphragms of different
materials and thicknesses, depending on the shockwave prassures
and time constants expected, The contact assembly (Fig., B-2) ,
is adjustable and has a sliding contact within an insulated ;1
housing, This contact is held in the extended position by a o
spring so that overpressures by the ehock wave will cause ¢
the contact to reccde into its housing and prevent permanent
deformation to the dlaphragm,

The brass connecting tube can be of any ccnvenient length
which will permit the orientation and positioning of the gauge
body at the desired water depth and the piacement of the flash
bulbs at the proper haight above the water surface., This tube
;‘k; ' also carries the wiring from the contact assembly to the
o ] battery and flash bulb socket,

X The battery box houses a six volt drycell battery, switch,
?ﬁ and socket all connected in meriles with the contact and dia-

- e
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phragm,

2. Adaption for other use, A locking solenoid relay
could be incorporated into the gauge so that a heavier current
could be passed, since the actual time of contact is very
short, and this in turn could operate a small motor or a
bank of flash bulbs for greater camera distances,

III, USE IN THE FIELD,

The weight and location of the charge in relation to
the camera positions were the governing factors in the final
pnsitioning of the gauges, These gauges were placed on elther
side of the charge on a line perpendicular to the camera line
of sight, Because of the irregularities of the river bottom
the gauges had to be placed at various depths, ranging from
3 inches to 2 feet, When the water depth was less than
I feet the best results were obtained with the gauges at mid-
depth,

To check the gauges Lafore placing them in position, an
ohmmeter was connected in series with the contact and diasphragm.
The contact was adjusted by screwing the contact housing
(Fig. B-2) in or out until the ohmmeter showed that the gap
was at a minimum distance., A rough check can be made on the
amount of pressure required to close the contacts by pressing
on the diaphragm and watching the ohmmeter, In this manner
ic 1s possible to set the contacts so that a very small
pressure will activate the gauge. The gauge was held 1in
position by clamping the battery box to a pole that was set
vertically in the river bottom.

IV, TEST RESULTS,

1, Use as a scale marker, On the latest field test
the results of using.these gauges as scale mackers were very
good, The flashes from the bulbs could be seen clearly on
fhe film, The duration of the flashes is several frames at
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normal camera speed,

Figure B-3 18 an enlarged print from 35 mm film showing
the flashes to the right and left as white spots, The camera,
a 35 mm Mitchell equipped with a 1 inch lens, was approximately
500 feet from the explosion., Although this distance is fairly
short, in other cases the cameras had to be over 6000 feet
from the charge, yet the flashes were still measurable,

2. Troubles and their attempted cures, Although the
gauges were not 100# reliable, modifications during the field
test tended to correct the outstanding faults, Considerable
trouble was encountered when salt water spray from the ex-
plosions corroded the brass contacts in the flash bulb sockets
and rusted the steel spring in the contact assembly., The
corrosion problem was reduced by installing wide mouth mason
Jars over the sockets and it 1s hoped that with the use of
stainless steel or phosphor-~bronze springs in the contact
assembly the rust problem will be eliminated.

In very shallow water - 8 inches or less - there seemed
to be a shockwave cut-off effect, 8o that the dlaphragm was
not depressed, When this condition prevailed, both gauges were
placed on the deeper side of the charge, perpendiculsr to the
camera line of sight.

V. CONCLUSION.

Although the gauges did not function 100%, they were
better than any other system tried, Since each gauge 1s a
complete unit within itself, set-up time 1is reduced con-
siderably over other systems, The distance hetween flashes
of the bulbs was always measurable on the film, although
camera to subject diastances of over 6000 feet were encountered,
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FIG. B-3 FLASHBULB SCALE
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. APPENDIX ¢

MODEL LAWS IN RELATION T0 SCALING

. OF THE

BASE SURGE PHENOMENON

by
A. B, Arong, Consultant
Amherst College

I, INTRODUCTION.

1.1 The discussion given below consists of a development

of the fundamental model laws and thelr applicatlon to the
description and prediction of base surge effects, Thls 1s

not a new contribution to the theory of models, but is simply
an elementary development of pertinent ideas which, when thus
assembled in one report, may prove useful to workers in

. the field and may help others more readily to use and interpret

the results being reported by NOL Project 152, More detalled
discussion of model laws and of hydraulic modeis may be

found in references (1) and (2) upon which this note is
largely based,

II. ELEMENTARY MODEL LAWS FOR GEOMETRICALLY SIMILAR MODEL
AND PROTOTYELZ.

2.1 "Geometrical similarity" means similarity of form, 1.e.,
two obJects are geometrically similar if the ratios of all
homologous dimensions are equal. The term "kinematic
similarity" denotes similarity of motion, 1.e., the paths

of homologous particles are geometrically similar and the
ratios of the velocities of the various homologous particles
involved in the motion are equal, "Dynamic similarity"
implies similarity of masses and forces, il.e,, two motion
occurrences are dynamically similar if they are kinematically
similar, if the ratio of masses ol the varlous homologous
particles are equal, and 1f the ratlos of homologous forces
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which affect the motion of the homologous particles are
equal,

2,2 We adopt the following notation, the subscripts m and
r denoting model and prototype respectively:

X s xp homologous linear dimensions,

tm, tp homologous time intervals,

m.s M homologous mass particles in corresponding
P positions,

Fm; Fp homologous mass accelerating forces,

/°m’/°p densities of homologous mass particles,

Then for geometrical similarity of model and prototype

a constant ratlo for all homologous linear dimensions,

For kinematlc similarity the ratio of homologous time
intervals required for any two homologous particles to travel
similar paths must be constant throughout the system:

——n}n_— - m Fm »n F
’
m,. r F r
P p
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From dimensional considerations it then follows that:

ﬁf' (a) the ratio of homologous volumes : v, = xr3 ‘g
3

(b) the ratio of velocities of homologo;s particles ‘2

at corresponding positions: v, = t: ;

(¢) the ratio of accelerations of homologous particles .%

at corresponding positious: 8, = —%Eg ‘f

r :

2.3 Both model and prototype must satlisf{y Newton's second law:

Fm =m.oa, Fp = mp ap .f

Therefore: &
x

F.=m, a, Pp X, o3 (1) i

r -

e

In addition, other conditions must be satisfied, depending
. . upon the nature and relative importance of the other driving
forces., Perfect simllarity 1s rarely attailnable in the model
because it is generally impossible to satisfy all the addition-
al restrictions, hut simple scaling laws may be derived for
situations in which one particular kind of force 1s dominant.

10 TR R Y

2.4 The Frou'e Law, For the case in which che force of

g gravity is the dominant one causing motion in both model and
| prototype, the gravitational forces acting on homologous
mass particlies are: .

g
ceb]

¥
&

Fm m,om vm gm H Fp -,op Vp gp

R Y R

o and Frpo=Pp X~ By (2)
e’ »
%ﬁ where g, is the ratio of gravitational acceleratlions in the
Y
o
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model and prototype; its magnitude 1s usually unity, but it
will be ratained here as an algebralc symbol for generality.

To satiafy both (1) and (2) it is necessary that:

3 - 3
Pr *p~ X Pr *p 8Bp s
2
r

1/2
t,-<::> . (3)

When g, " 1,

from which

b, = (x,)1/2 ()

indicating that the ratio of homologous time intervals will
be equal to the square root of the length scale when gravi-
tational effects sre dominant. This is the basis of "Froude
scaling".

Since the ratio of velocities of homologous particles:

equation (3) may be written in another Corm:
1/2
ve = (x,8,) (5)

or,alternativeiy:

2 2
Vm v

S

X *p¥p
Equation () represents what is perhaps a more familiar
form of the Froude law, namely that for dynamic similarity of

(6)
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gravitational affecte, the Froude number va/kg must be
equal for correspouding points in the model and prototype.

2.5 For the particular purpose of examining the scaling of
such base surge properties as the radius - time curve we
use equation (4), noting that corresponding radii R and Rp
would occur at'correuponding times tm and tp. If we select
the column dlameters Dm and D_ as mesasures of the linear
scale, certain radii would correspond to each other if

Rm R
- = 52 . The corresponding time intervals measured from
m

o
a common zero would have to satisfy the condition of
equation (4)

Thus, if gravitational forces are dominant and Froude
scaling 1s satisfied, all model and prototype results would
fall on the same curve if plotted in the form of r vs «,
where r & R/D and 1 & t/Dl/?. Data presented in various
reports by this groﬁp has been treated accordingly.

III. MODEL LAWS POR THE BASE SURGE.

3.1 We now consider the base surge phenomenon itself in
more detall, taking into account the etf'fects of column
height, column density, ambient density, etc. It 1s assumed
that, at least in the initial stages, gravitational effects
are dominant. Consider a column of height C, diameter D,
and density o, surrounded by a fluidl medium of density,oo,
and descending under the influence oy gravity.

At 2 height y the material of the column would have a

potential energy per unit volume (0 —;oo) g€ ¥. The veloclty

which would be acquired at the base by virtue of this change
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in potential would be given by 1/2 0 v2. Thus taking &
ratio of model to prototype:

(1-/°om)

1/_"_92)

Lr ¥

€. Vn

2
Ve© = 08V (7)
where

Lo
c = (] - —
and Vp is the vertical length scale defined by C./Cp.

Thus for motion in the vertical direction:

y!’
<2z T &Y
ry

and the ratio of homclogous time intervals for vertical
motion is given by:

1/2
(%g;) (8)

The horizontal and vertical scales are connected by
the fact that the velocity v becomes a horizontal velocity
at the base of the column, Then for horizontal motion:

Xp
5 ) - G Bp Yy
‘rX
and . 2 /e
t e ( r ) (
rx e 9)
Op8pVp
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where trx is the ratio of homologous time intervals for
horizontal motion and X, i8 the horizontal scale determined

by Dm/bp'

3.2 If we again consider homologoua radij in terms of
the horizontal scale such that Rm such radii will be

R, ,
o

m p
attained at time intervals such that

1/2 ( 1/2
tmx ( °a°m) - tpx \ aicp)

D, Dp

(gr is assumed unity).

Thus, measurements of R vs, t should fall on the same
curve if plotted as » vs, " where r =RMD and
™ &t (0oc)/2m,

REFERENCES

(1) Hydraulic Models, American Soclety of Civil Engineers,
Manual of Engineering Practice No, 25.

(2) Scale Models in Hydraulic Engineering. J, Allen,
Longman's, Green, and Co, 1947,
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APPENDIX D
BASE SURGE DATA FROM TEST BAKER

The following data were extracted from the University of
California Report No, 3 on the Photogrammetry of Test Baker
{14) and "Characteristics of the Base Surge” by Roger Revelle
[15]. They are in agreement with an independent check of
bese surge growth made by NOL personnel from 35 mm photo-
graphic records obtained at Bikini on the U,S.,S., Kenneth
Whiting., Smoothed mean curves are used in this report for
comparison with scaled high explosive results, The average
maximum column diameter 1s 2030 f¢t,
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Secaled Surge
Time Radius

T R
(sec/ct1/2) (1)
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7
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1025
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1535
1
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Data obtained by R. Revelle [15],
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